Nachfolgend erhalten Sie nähere Informationen zu den wichtigsten Schallschutzprodukten unseres Hauses aus dem Bereich Raumakustik.
Bei der Raumakustik geht es darum, wie sich die baulichen Gegebenheiten eines Raums auf die Entfaltung und das Wahrnehmen von Schall auswirken. Das Ziel ist es, die Wahrnehmqualität des Schalls zu verbessern. Dabei steht die akustische Gestaltung des Raums im Vordergrund.
Schallharte Wände und Decken wirken sich negativ auf die Raumakustik aus. Zum Beispiel begünstigen vollverglaste Wandflächen und der Verzicht auf Teppichböden die Reflexion des Schalls und führen somit zu langen Nachhallzeiten. Dies verscglechtert die Qualität der Akustik.
Raumakustikmodule reduzieren störende Geräusche und Nachhallzeiten und ermöglichen so u.a. in Büros, Schulen, Kindergärten, Konferenzräumen usw. eine bessere Konzentration, Kommunikation und somit eine höherer Leistungsfähigkeit der jeweiligen Personengruppen.
Wir beraten Sie kompetent zu den unterschiedlichen Raumakustikmodulen.
Sie möchten bereits im Vorfeld eine Gefährdungsbeurteilung zur Lärmbelastung in Arbeitsräumen durchführen? Dann nutzen Sie doch die kostenlose App der Bundesanstalt für Arbeitssschutz und Arbeitsmedizin, die kein Fachwissen voraussetzt: SPA (SchallPrognoseApp).
Absorberplatten werden an Decken oder Wandflächen angebracht. Sie sind standardmäßig ist in den Farben weiß und grau erhältlich. Auf Wunsch sind aber auch sämtliche anderen Farbbeschichtungen mittels eines Spezial-Coatings erhältlich. Das System dient der akustischen Gestaltung des Raums, sowie, falls gewünscht, der optischen Gestaltung.
Das für die Absorberplatten verwendete Material ist Basotect® der Firma BASF.
Basotect® ist ein flexibler, offenzelliger Schaumstoff aus dem duroplastischen Kunststoff Melaminharz. Dieses Material kann bei Temperaturen von bis zu 240 °C verwandt werden, ist dabei schwerentflammbar und verfügt über ein geringes Eigengwicht. Basotect® hat folgende Eigenschaften:
⇒ aufgrund des Basismaterials Melaminharz:
⇒ aufgrund der offenzelligen Schaumstruktur:
Auf Wunsch sind die Absorber nicht nur in sämtlichen Farben sondern auch in diversen geometrischen Formen erhältlich. Der Designfreiheit in der Gestaltung sind fast keine Grenzen gesetzt.
Bei der farblichen Gestaltung, die einige Standardfarben beinhaltet, grundsätzlich aber in jedem RAL-Farbton erhältlich ist, kommt ein schalltransparentes Spezial-Coating zum Einsatz, welches die akustischen Eigenschaften des Absorbermaterials noch erhöht. Ein zusätzlicher Vorteil ist, dass die elektrostatische Aufladung des Kunststoffs eliminiert wird und somit weniger Staub anhaften kann. Die optische Beschaffenheit entspricht dann der eines feinen Rauputzes. Die Raumakustik-Elemente können auch als Deckensegel oder 3-D-Objekte frei hängend im Raum angebracht werden.
Um beurteilen zu können, ob ein Geräusch über längere Zeit zu Hörschädigungen führen kann, ist es notwendig, den gesamten Einfluss wechselnder Schallpegel zu kennen. Um dies bestimmen zu können, braucht man den äquivalenten Schallpegel (LAeq).
Der äquivalente Schallpegel ist der gemittelte Wert eines wechselnden Schallpegels während einer bestimmten Zeit. Hierbei ist die Menge wahrgenommener Schallenergie eines wechselnden Schallsignals gleich der wahrgenommenen Schallenergie eines konstanten Schallsignals.
Für eine gleiche Belastung kann bei einer Halbierung der Einwirkzeit der Schallpegel verdoppelt werden. Die Schallbelastung von 8 Stunden 80 dB(A) entspricht der Belastung von 4 Stunden 83 dB(A).
Der wahrgenommene Schall sollte nun als Einzahlwert angegeben werden. Indem man die Schallpegel in den verschiedenen Oktavbändern addiert, erhält man diesen Einzahlwert.
Dabei muss man die Tatsache berücksichtigen, dass der Mensch tiefere Töne (< 500 Hz) nicht so gut wahrnimmt. Das bedeutet, dass beim addieren der Schallpegel in den unterschiedlichen Oktavbändern die tieferen Töne (< 500 Hz) in geringerem Maße Eingang finden als die mittleren und höheren Töne.
Die Schallpegel in den Oktavbändern werden, entsprechend der Empfindlichkeit des menschlichen Gehörs, korrigiert. Auf diese Weise erhält man den Einzahlwert angegeben in dB (A).
Die Geschwindigkeit, mit der Schallwellen auf einander folgen, ist das Maß für die Tonhöhe. Bei langsamen Luftdruckschwankungen hören wir einen tiefen Ton. Je schneller die Schwingungen aufeinander folgen, desto höher wird der Ton.
Ein Maß für die Tonhöhe ist die Anzahl der Schwingungen pro Sekunde bzw. die Frequenz (f). Sie wird in Hertz (Hz) angegeben. Eine Frequenz von einem Hertz bedeutet, dass der Zyklus der Schwingung einmal pro Sekunde auftritt.
Ein gesundes menschliches Gehör ist in der Lage, Schall mit Frequenzen zwischen 16 und 20.000 Hz wahrzunehmen, wobei nicht alle Frequenzen gleichermaßen wahrnehmbar sind.
In Räumen, die keine oder nur eine unzureichende Schallabsorptionsmaterialien enthalten, entsteht Hall. Hall entwickelt sich durch Reflexion von Schallwellen, die auf Objekte im Raum bzw. Böden, Wände und Decken treffen. Die negativen Auswirkungen von übermäßigem Hall sind:
Die Nachhallzeit ist die Zeit in Sekunden, in der, nach Ausschaltung der Schallquelle, der Schallpegel um 60 dB sinkt. Die Nachhallzeit wird bestimmt in den Oktavbändern von 125 Hz bis einschließlich 4000 Hz.
In der Praxis ist das 1.000 Hz-Oktavband die wichtigste Frequenz, weil hier das Zentrum unseres Sprachbereiches liegt. Die Nachhallzeiten der übrigen Oktavbänder sollten nicht zu stark abweichen. Wobei anzumerken ist, dass die tiefen Töne im Bereich von 125 Hz und 250 Hz lediglich einen geringen Einfluss auf die Schallwahrnehmung haben, weil Geräusche in diesen Tonhöhen in alltäglichen Situationen in geringem Maße vorkommen und der Mensch diese Tonhöhe nicht so gut hört.
Bei der Berechnung der Nachhallzeit geht man davon aus, dass die Einrichtung und der Raum selbst bereits über eine bestimmte Menge Schallabsorption verfügen. In der modernen Architektur gibt es eine Tendenz, die Wert auf eine einfache Instandhaltung legt. Dies führt zum Einsatz akustisch harter Materialien: Boden aus Stein, Kunststoff-Lamellen, Schreibtische und Schränke aus Metall. Das bedeutet, dass in bestimmten Fällen die Einrichtung lediglich einen geringen Beitrag zur gesamten vorhandenen Menge der Schallabsorption beiträgt. In solchen Situationen muss der größte Anteil der Schallabsorption durch die Decke erbracht werden.
Für eine gute Raumakustik ist eine große Menge an Schallabsorption notwendig. Unter Berücksichtigung der modernen Bau- und Einrichtungskultur führt der Einsatz von Decken mit zu niedrigem Schallabsorptionskoeffizienten zu enttäuschenden Ergebnissen. Indem man eine Decke wählt, die über einen ausreichend hohen Schallabsorptionskoeffizienten verfügt, bietet man dem Ausstatter des Raumes alle Freiheiten, nach seinen Bedürfnissen die Einrichtung zu gestalten.
Einen großen Teil unseres Lebens verbringen wir in Gebäuden. Das Raumklima der Gebäude in denen wir wohnen, arbeiten und uns erholen, beeinflusst unsere Gesundheit und unser Wohlbefinden.
Beschwerden wie Kopfschmerzen, Ermüdung, Irritation der Atemwege und Augen, Lustlosigkeit und Stress sind häufig auf ein schlechtes Raumklima zurückzuführen.
Das Raumklima wird im Wesentlichen von vier Faktoren bestimmt:
Schall ist eine Form von Energie. Schall entsteht, wenn Moleküle eines Mediums (i.d.R. Luft) durch die Schwingung eines festen Körpers (Schallquelle) in „Druckschwingungen“ versetzt werden. Diese, den atmosphärischen Luftdruck überlagernden Druckschwankungen breiten sich im Medium schallwellenförmig aus. Die Schallgeschwindigkeit in der Luft beträgt ca. 340 m/s. Schall kann in unterschiedlichen Formen auftreten, wie z.B. als Ton, Klang oder Geräusche. Dabei kann Schall auch in festen Körpern oder in Flüssigkeiten übertragen werden. Dann wird von Körperschall oder Flüssigkeitsschall gesprochen.
Die Ausbreitung von Schallwellen erfolgt niemals verlustlos, sondern ist stets einer mehr oder minder großen Dämpfung - der Absorption - unterworfen. Ein hoher Absorptionsgrad kann z.B. durch poröse Materialien oder Textilien erreicht werden.
Schallabsorption ist für das akustische Erleben der Nutzer eines Raumes wichtig. Durch adäquate Schallabsorption wird der Raum auf seinen Nutzungszweck abgestimmt. Die richtige Schallabsorption sorgt dafür, dass der Schallpegel beherrscht wird, dass der Cocktailparty-Effekt sowie Desorientierung vermieden werden und dass die Sprachverständlichkeit erhöht wird.
Die schallabsorbierenden Qualitäten eines Materials werden ausgedrückt im Schallabsorptionsgrad α. Der Schallabsorptionsgrad α ist die Verhältniszahl der absorbierten Schallenergie und der einfallenden Schallenergie. Trifft die Schallwelle auf eine Oberfläche, dann wird die Schallenergie abhängig von der Art des Materials:
a. zu einem Teil zurückgeworfen (Reflexion);
b. zu einem Teil durch das Material aufgenommen (Absorption);
c. zu einem Teil durchgelassen (Transmission).
Um die schallabsorbierende Eigenschaft eines Materials in einer Zahl ausdrücken zu können, wurden der NRC-Wert und der αw-Wert entwickelt.
Die von der Schallquelle erzeugten Schallwellen breiten sich mir Schallgeschwindigkeit im umgebenden Medium (meistens Luft) kugelförmig aus und verringern mit zunehmendem Abstand ihre Schallintensität. Dieser Vorgang wird von der Umgebung durch Absorption der Schallwellen stark beeinflusst. Dabei wird zwischen zwei Grenzfällen unterschieden:
Die Art der Schallausbreitung im Arbeitsraum eines Betriebes wird sich in der Regel zwischen diesen beiden idealisierten Extremfällen bewegen. In der Raumakustik wird die baulich technische Ausführung der Umgebung bzw. des umgebenden Raumes durch Kenngrößen wie Schallabsorptionsgrad, Schalldämmmaß, Einfügungsdämmmaß und Nachhallzeit beschrieben. Diese Kenngrößen stellen wichtige Hilfsmittel in der Lärmminderungstechnik dar.
Schalldämmung ist das Maß, in dem Schall gehindert wird, in andere Räume durchzudringen. Die Schalldämmung hat Einfluss auf den Schallpegel im Raum, in den der Schall eindringt, und beeinflusst damit die Privatsphäre und das Konzentrationsvermögen im angrenzenden Raum. Hinzu kommt, dass tiefere Töne nicht so gut isoliert werden können, wie höhere Töne. Der Schall dringt verzerrt durch, wodurch der empfangene Schall noch störender wirkt.
Das erforderliche Niveau der Schalldämmung ist von den Umständen abhängig. An die Schalldämmung von zwei nebeneinander liegenden Räumen, in denen kaum private Tätigkeiten durchgeführt werden, werden nur geringe Anforderungen gestellt. Liegt neben einem dieser Räume zum Beispiel ein Direktionszimmer, werden entsprechend hohe Anforderungen gestellt.
Im Nutzbau kann Schall auf unterschiedliche Weise in angrenzende Räume durchdringen:
Der Schalldruck ist eine periodisch wiederkehrende Druckschwankung. Der Schalldruck ist die kennzeichnende Größe für die Schallstärke. Die Messgröße ist das Pascal.
1 Pascal (Pa) entspricht 1 Newton pro Quadratmeter (N/m²).
Die von einem Menschen mit sehr gutem Gehör wahrnehmbare niedrigste Luftdruckschwankung liegt bei ca. 0,00002 Pa. Diesen Grenzbereich nennt man Hörschwelle. Nur Kinder mit einem besonders empfindlichen Gehör können Schall wahrnehmen, der im Bereich dieser Hörschwelle liegt. Bei einer Luftdruckschwankung von 200 Pa verursacht der Schall Schmerz. Diesen Bereich nennt man Schmerzgrenze.
Der Schallbereich, der für den Menschen von Bedeutung ist, liegt also zwischen 0,00002 Pa und 200 Pa. Die Differenz weist somit einen Faktor von 107 auf. Der Luftdruck beim lautesten Schall ist 10 Millionen mal höher als beim leisesten Schall. Solche Zahlen sind für Berechnungen unpraktisch und daher gibt man die Lautstärke in einer logarithmischen Skala mit der Einheit Dezibel (dB) an. Die Lautstärke wird auf diese Weise in einer praktikablen Größe ausgedrückt.
Um Schwankungen des herrschenden Luftdrucks nicht berücksichtigen zu müssen, hat man den Referenzluftdruck (P0) eingeführt. P0 = 2 x 10-5 Pa. Dieser Wert gilt für alle Frequenzen und stimmt überein mit den Luftdruckschwankungen bei einer Hörschwelle von 1000 Hz. Das Zeichen für den Schalldruckpegel ist LP.
Den Schalldruckpegel dB berechnet man mit folgender Formel:
LP = 10Log (P² eff / P²0) = 20Log Peff / P0 (dB)
Darin ist:
Beispiele bekannter Geräusche mit Ihrem effektiven Schalldruck und Schalldruckpegel:
Effektiver Schalldruck (Pa) | Schalldruckpegel (dB) | |
Schmerzgrenze | 200 | 140 |
Presslufthammer | 20 | 120 |
Diskothek | 2 | 100 |
Radio (laut) | 0,2 | 80 |
Gespräch (ca. 1m) | 0,02 | 60 |
Flüstern (ca. 1m) | 0,002 | 40 |
Rauschen von Blättern | 0,0002 | 20 |
Hörschwelle | 0,00002 | 0 |
Bei allen Problemen, die mit der Schalldämmung zu tun haben, spielt die Reflexion einer Schallquelle an einem Hindernis, z.B. einer Wand, eine nicht zu unterschätzende Rolle. Die Reflexion ist abhängig von der Frequenz und der Richtung der Schallwelle zum Hindernis sowie von der Beschaffenheit des reflektierenden Hindernisses.
Die zurücklaufende (reflektierte) Welle überlagert sich mit der hinlaufenden Welle und ergibt, je nach den vorliegenden Bedingungen, im Extremfall ein Auslöschen oder eine Verstärkung der Schallwelle. Hindernisse in geschlossenen Räumen sind u.a. Wände, Decken, Fußböden und Maschinen. Vereinfacht kann gesagt werden, dass bei „schallharten“ Wänden eine starke Reflexion stattfindet und bei „schallweichen“ Wänden eine hohe Schallabsorption sich einstellt.
Wolf IndustrieSchallSchutz
© 2022 Wolf IndustrieSchallSchutz. Alle Rechte vorbehalten.